extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3×D5) = Dic5.D6 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.1(S3xD5) | 240,140 |
C22.2(S3×D5) = Dic3.D10 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.2(S3xD5) | 240,143 |
C22.3(S3×D5) = C30.C23 | φ: S3×D5/D15 → C2 ⊆ Aut C22 | 120 | 4- | C2^2.3(S3xD5) | 240,141 |
C22.4(S3×D5) = Dic3×Dic5 | central extension (φ=1) | 240 | | C2^2.4(S3xD5) | 240,25 |
C22.5(S3×D5) = D10⋊Dic3 | central extension (φ=1) | 120 | | C2^2.5(S3xD5) | 240,26 |
C22.6(S3×D5) = D6⋊Dic5 | central extension (φ=1) | 120 | | C2^2.6(S3xD5) | 240,27 |
C22.7(S3×D5) = D30⋊4C4 | central extension (φ=1) | 120 | | C2^2.7(S3xD5) | 240,28 |
C22.8(S3×D5) = C30.Q8 | central extension (φ=1) | 240 | | C2^2.8(S3xD5) | 240,29 |
C22.9(S3×D5) = Dic15⋊5C4 | central extension (φ=1) | 240 | | C2^2.9(S3xD5) | 240,30 |
C22.10(S3×D5) = C6.Dic10 | central extension (φ=1) | 240 | | C2^2.10(S3xD5) | 240,31 |
C22.11(S3×D5) = C2×D5×Dic3 | central extension (φ=1) | 120 | | C2^2.11(S3xD5) | 240,139 |
C22.12(S3×D5) = C2×S3×Dic5 | central extension (φ=1) | 120 | | C2^2.12(S3xD5) | 240,142 |
C22.13(S3×D5) = C2×D30.C2 | central extension (φ=1) | 120 | | C2^2.13(S3xD5) | 240,144 |
C22.14(S3×D5) = C2×C15⋊D4 | central extension (φ=1) | 120 | | C2^2.14(S3xD5) | 240,145 |
C22.15(S3×D5) = C2×C3⋊D20 | central extension (φ=1) | 120 | | C2^2.15(S3xD5) | 240,146 |
C22.16(S3×D5) = C2×C5⋊D12 | central extension (φ=1) | 120 | | C2^2.16(S3xD5) | 240,147 |
C22.17(S3×D5) = C2×C15⋊Q8 | central extension (φ=1) | 240 | | C2^2.17(S3xD5) | 240,148 |